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Abstract

A critical look is taken at both positive and null evidence for the Θ+

pentaquark. Potential problems with experiments will be discussed and

the question of what conclusion can be drawn from both the positive and

the null results is examined. First the question of existence of the Θ+

pentaquark is considered, followed by a discussion of new experiments

that are either planned or in progress to answer questions about its mass,

width and isospin. Finally, indirect evidence for the parity of the Θ+ is

examined, and suggestions for experiments to measure its parity directly

are given.

1 Introduction

The possible existence of the Θ+ remains one of the most exciting topics in nu-
clear physics. To date there are over ten experiments[1] with evidence for this
state, and a similar number of high-energy experiments[2] that see no evidence
for the Θ+ even though other states, such as the Λ(1520) hyperon resonance,
are seen clearly. Furthermore, the Θ+ is not seen in e+e− collisions[3] where,
for example, the J/ψ or the ψ(2s) could decay to a Θ+ and anti-Θ+ final state.
On the other hand, in the latter two cases we can only guess at the Θ+ produc-
tion mechanism (or lack thereof). In contrast, several experiments at medium
energies have exclusive final states and production cross sections that can be
calculated[4] within a theoretical model, given some reasonable assumptions.

Can the contrasting results of these experiments be understood? This is
the central theme of the present paper, along with an overview of experimental
results expected in the near future. If the Θ+ exists, it is important to design
experiments that can accurately measure its width, spin and parity. First, a
critical look is taken at both positive and null experimental results for the Θ+

pentaquark.
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2 Does the Θ+ Exist?

Virtually all experiments are subject to some criticism. It is quite difficult to
understand the systematic uncertainties in a measurement, and this is especially
true when the statistics are limited. The experiments with evidence for the Θ+

have low statistics, and the background under the peaks may not be completely
understood. As a result, the statistical significance of the evidence has been
questioned. It makes sense to focus on the most reliable experiments to answer
the question of whether the Θ+ exists.

The first experiments from the LEPS[5], DIANA [6], CLAS[7] and SAPHIR[8]
collaborations were ground-breaking, but each has some weakness. The LEPS
experiment had only 19 counts in the peak on top of a background that was 17
counts, so detailed studies of the systematics of the background and the Fermi
motion correction were difficult. (New data from LEPS with more statistics
will be presented below.) The DIANA experiment is hampered by background
from kaon charge-exchange reactions, and not enough detail is given in their
paper to show how the cuts they employ to reduce this background affect the
mass spectrum with the Θ+ peak, which is concentrated into a single bin. The
CLAS data was the first exclusive reaction on the Θ+ but requires a complicated
mechanism with secondary-scattering to give energy to the proton, which would
otherwise be a spectator. As a result, the shape of the background under the
Θ+ peak is difficult to estimate and may include kinematic reflections[9]. The
SAPHIR collaboration was the first to publish for the γp → K0

s
K+n reaction,

but the large cross section they estimated from their measurement conflicted
with data for the same reaction from CLAS[10]. A re-analysis of the SAPHIR
data[11] suggests a smaller cross section but is still under study.

Following the first reports, several experiments measured the invariant mass
of the K0

s
and a proton, which showed a peak close to the Θ+ mass, from

inclusive production. One of these collected data from neutrino experiments
(ITEP[12]) and two others used electroproduction (HERMES[13] and ZEUS[14]).
Of course, the K0

s
is a mixture of both strangeness +1 and −1, so the invariant

mass spectra will include both Σ∗+ and possible Θ+ peaks. It follows that a
peak at a mass where no Σ∗+ resonance is known could be evidence for the Θ+

or an unknown Σ∗+ resonance. It is also curious that these three measurements
reported a Θ+ mass which is about 10 MeV below that seen by the first experi-
ments (barely compatible within the experimental uncertainties). Furthermore,
most of the null evidence for the Θ+ (see below) also measure the pK0

s
invariant

mass, but no peak is seen at the Θ+ mass. The inherent weakness in not know-
ing the strangeness of a particle, coupled with the uncertainty in the background
which must include the overlapping Σ∗+ resonances, makes this evidence less
convincing than exclusive measurements.

Three experiments remain that have good evidence for the Θ+ . The first is
from CLAS on a proton target [15]. More details will be given separately[16] but
a few comments are in order. This exclusive reaction, γp→ π+K−K+n is very
clean, and the background comes primarily from meson production reactions.
The cuts for this analysis were not chosen arbitrary, as has been suggested by
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Figure 1: Preliminary missing mass spectra for the γd → K+K−X reaction
measured with the LEPS detector at SPring-8. The event selection requires:
(1) particle ID for each kaon; (2) the missing mass of the KK system is within
5 MeV of the nucleon mass; (3) a cut on the KK invariant mass to remove the
φ-meson resonance; (4) the photon energy is less than 2.35 GeV. The Θ+ peak
is seen at about 1.53 GeV on the left and the Λ(1520) peak is seen at 1.52 GeV
on the right.

some critics, but are specifically designed to remove the dominant background
along with the assumption that the Θ+ can be produced through an s-channel
diagram[15]. Furthermore, these data were examined by a partial wave analysis
(PWA), where the amplitudes of each partial wave were fit over the full angular
coverage of the CLAS detector. Hence, the background under the Θ+ peak
(after all cuts are applied) has been fixed by the PWA from the full (uncut)
data. The Θ+ peak here has the highest statistical significance yet reported,
in excess of 7 σ. Because this is an exclusive measurement from the proton,
there is no ambiguity in rescattering from other nucleons, and the strangeness
of the final state is clearly identified. On the other hand, the mass of the peak
is at 1.55 ± 0.01 GeV, which is about 0.01 GeV higher than the initial Θ+

measurements.
The second experiment with good evidence for the Θ+ is the COSY-TOF

result from the exclusive hadronic reaction pp→ Σ+K0
s
p. Here, the strangeness

of the pK0
s

invariant mass is tagged by the Σ+. The particle identification is
done entirely by geometric reconstruction which, for this near-threshold reac-
tion, is shown to be very accurate. The details are given separately in these
proceedings [17]. Some critics have questioned whether this method provides
good identification of the final state, but it can be rigorously proven that the
kinematics are over-constrained[17]. The result is a very clean final state show-
ing a Θ+ peak at a mass of about 1.53 GeV, which is on the low side of the Θ+

mass measurements.
The third experiment, and perhaps the most convincing one, is the new data
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from LEPS on a deuterium target. These data are shown in Fig. 1, which uses
minimal cuts for the event selection. There are clear peaks for both the Λ(1520)
and the Θ+ where the same event sample has been used for both plots and
the same Fermi motion correction is applied to both. The only difference is
that one spectrum uses the K+ and the other uses the K−, and the detector
acceptance is symmetric for these charged kaons. In addition, the same analysis
procedures applied to a mixed-event test do not show any peaks at the location
of either the Θ+ or the Λ(1520). In the mixed-event test, the K+ and K− are
taken from different events, but the same analysis cuts (which ensure energy and
momentum conservation) are applied. Further confidence is gained by seeing
that the peaks cannot be generated from a kinematic reflection of K+K− pairs
from the φ-meson peak. More details are given in a talk by Nakano[18].

2.1 Null Results

Having taken a critical look at the evidence in favor of the Θ+ we now turn to
the null results. These have all come from either high-energy reactions using
a hadron beam (such as HERA-B, HyperCP, and CDF[19]) or from electron-
positron colliders (Belle, BaBar, BES[3]). Because of the difficulty in detecting
neutrons in these detectors, typically these experiments look at the pK0

s
invari-

ant mass, like in the HERMES and ZEUS experiments. Unlike the medium-
energy electroproduction reactions, the high-energy hadron beam experiments
typically have much higher statistics yet see no Θ+ peak. Naively, one might
expect that if the Θ+ exists, it should be produced in both high-energy electro-
production and high-energy hadron collisions, perhaps through fragmentation
processes as the flux tube breaks when the struck quark exits the nucleon. This
reasoning suggests that the Θ+ does not exist. On the other hand, for the
electron-positron collisions, it is not clear how an appreciable number of Θ-Θ̄
pairs are produced by a mechanism where 5 quarks and 5 antiquarks must be
produced from, say, decay of a qq̄ meson.

Since the hadron beam experiments pose a more serious challenge to the
existence of the Θ+ we should examine these experiments with some care. In
the interest of fairness, the same criticism directed at the HERMES and ZEUS
experiments should also be applied to the high-energy hadron experiments. Per-
haps the most severe criticism is that the pK0

s
spectra should show evidence for

known Σ∗+ resonances, even if these resonances are broad, yet these spectra
are featureless even with high statistics. Clearly, more effort needs to be put
toward understanding the background in these measurements.

The production mechanism of the Θ+ (if it exists) or even the Λ∗ and Σ∗

resonances from fragmentation processes is not well known. Hence the high-
energy experiments can only put an upper limit on the ratio of production of,
say, the pair of Σ∗ resonances at 1660-1670 MeV to Λ(1520), or Θ+ to Λ(1520).
Non-observation of the Σ∗ resonances, which might be difficult to detect because
of their broad width, does not mean that the Σ∗ does not exist. Similar reasoning
applies to the non-observation of a Θ+ peak, although the limits will be more
stringent because of its narrow width. When examining the results from high-
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energy hadron beams, it is important to report not just the upper limit on Θ+

but also the upper limits on other known hadron resonance production. These
upper limits should then be confronted quantitatively with calculations based
on models of flux-tube fragmentation.

Finally, the facts should be clearly stated when drawing conclusions from
both positive and null evidence. The kinematics in experiments with upper
limits on Θ+ production are different from those experiments reporting posi-
tive evidence. In other words, the null results do not prove that the positive
results are wrong. There may be some interesting physics to be learned, assum-
ing the experiments are correct, as to why exclusive measurements at medium
energy show a potential Θ+ peak whereas this signal seems to be obscured in
high-energy inclusive measurements. Regardless of the explanation, the facts
(and assumptions) should be made clear when drawing conclusions about the
existence of the Θ+ pentaquark.

2.2 Experimental outlook

Two measurements expected to produce about a ten-fold increase in statistics,
one using a deuterium target and the other using a hydrogen target, are cur-
rently being analyzed from CLAS. However results are not expected to be ready
until late 2004. In addition, another experiment to get more statistics from the
COSY-TOF detector is planned within the year. High statistics will be a crucial
test of whether the Θ+ exists or not.

Analysis of the new deuterium data from CLAS is in progress. The missing
mass spectrum for the γp → K+K−pn reaction, where only the charged parti-
cles are detected, shows a clean neutron peak with very litle background. The
photon beam had a maximum energy of 3.6 GeV, compared with the published
data[7] which was taken at two photon beams with 2.3 and 3.0 GeV maximum
energy. The higher beam energy and the lower magnetic field of the new mea-
surement provide different kinematics than before[7]. (Note that one can match
the kinematics of the earlier CLAS data by limiting the photon energy and mak-
ing angular cuts in the data analysis.) Because of the importantce of “getting
it right the first time”, the CLAS collaboration has chosen not to release this
mass spectrum for the nK+ system (where the Θ+ peak would be expected)
until the analysis results on the full data set are final.

Similar comments apply to the new proton data from CLAS. However, in
this case the photon beam energy is lower than the published result[15], which
had the majority of the data taken at a maximum photon energy of 5.4 GeV.
The new data are focussed on a measurement of the reaction γp → K0K+n,
similar to that reported by the SAPHIR collaboration[8]. Preliminary data on
this reaction was reported at the NSTAR 2004 conference[20] but these data
have not been published because higher statistics were desired. Indeed, the new
data will provide at least a ten-fold increase in statistics in the desired photon
energy range.

The measurement at COSY-TOF will take data with improved detector
resolution within the next year, and could increase the statistics of the reported
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results[21] by as much as a factor of five. In addition, the new data are planned
at a slightly higher beam energy so that the detector acceptance is more uniform
in the region above the Θ+ peak. Again, this measurement could be definitive
if the reported results are reproduced with higher statistics. On the other hand,
if the peak is not reproduced then it will be important to find an explanation
of the previous COSY-TOF Θ+ peak.

3 How small is the Θ+ width?

One of the most curious features of the Θ+ is its apparent narrow width. Because
the Θ+ can “fall apart” (without quark pair creation) into a kaon and a nucleon,
its width is expected to be hundreds of MeV[22, 23, 24]. On the other hand, the
chiral soliton model predicts a narrow width[25] for the Θ+ based on symmetries
of the model (along with known constants such as the pion decay constant).
However, the width predicted by the chiral solition model has significant model
dependence[26, 27] and so may not be sufficient by itself to explain a width as
narrow as 1.0 MeV[27]. The quark model can also obtain a width on the order
of 5-10 MeV if there are correlations between quarks, such as diquark pairs in
the Θ+ wavefunction[23, 24, 28]. If the Θ+ exists and has a width of a few
MeV or less, then this presents a significant challenge to the conventional quark
model.

Unfortunately, only upper limits on the Θ+ width are available from the
experiments described above. The smallest upper limit comes from the DIANA
collaboration result, which shows a peak width of 9 MeV. However, Cahn and
Trilling [30] have shown that the DIANA result implies an intrinsic resolution
of the Θ+ on the order of 1 MeV. Other studies of the phase-shifts determined
from older KN scattering data[29, 31] suggest that if the Θ+ exists with a mass
in the range of 1530 to 1550 MeV, then its width is likely to be about 1 MeV or
less. More recent preprints[32, 33] have done careful calculations which compare
directly with the KN data and come to a similar conclusion that the Θ+ width
is on the order of 1 MeV. On the other hand, the KN database is very sparse in
this energy range, corresponding to the Θ+ mass, and better data is desired[34].

Two experiments have measured a Θ+ width that is not just an upper limit.
The HERMES experiment[13] has quoted a width of 13 ± 9 ± 3 MeV, where
the first uncertainty is statistical and the second one is systematic, which is
larger than the experimental resolution of 4-6 MeV. The Θ+ width also depends
on the underlying assumptions of the background shape, but in all cases the
uncertainties are large enough to be consistent with a width of 1 MeV. The
ZEUS experiment [14] measured an intrinsic width of 8 ± 4 MeV for the Θ+

which is about two standard deviations away from a 1 MeV width. It is worth
mentioning that width quoted here is from a combination of pK0 and p̄K0 data,
and the ZEUS experiment concludes that the width is above, but consistent
with, the experimental resolution of 2 MeV.
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3.1 Theoretical Speculation

If the Θ+ width is really as narrow as 1 MeV, then both quark and soliton
models will have a difficult time to explain such a narrow width. This fact alone
is perhaps one of the most worrisome aspects to the question of Θ+ existence.
However, it is possible to explain the narrow width[28] if the Θ+ is a mixture of
two mass eigenstates. One suggestion[35] is that the diquark model of Jaffe and
Wilczek[24] and the diquark-triquark model of Karliner and Lipkin[23] could
mix. In this case, the mixing can conspire to decouple one of the eigenstates
from KN decay, giving it a narrow width (and the other eigenstate with a wide
width[28]). Such a mechanism would require fine-tuning of the mixing, which is
not a desirable feature of any model, but at least allows for a possible explanation
of the narrow width.

Another paradox is how the Θ+ can be produced if the width is so narrow.
For photoproduction, the most straight-forward calculation of the production
mechanism is through the t-channel, where the width is related to the coupling
constant for t-channel kaon exchange. If the width is about 1 MeV, then this
diagram is suppressed. However, K∗ exchange is still possible, and this sug-
gests experiments that could test this mechanism[28]. Another possibility is
production through a cryptoexotic N∗ resonance[36]. This was first suggested
by the CLAS proton data[15]. If this is the dominant production mechanism,
then some experiments with null results could be explained[36]. As enticing as
these theoretical ideas may be, the ultimate test will be experiment.

3.2 Experimental Outlook

The best way to measure the width of the Θ+ is with a high-resolution spec-
trometer, for a reaction that clearly identifies the strangeness in the final state.
A proposal for the reaction K+p → π+Θ+ has been approved to run in 2005
at the KEK facility in Japan[37]. The K+ beam at momentum 1.2 GeV/c will
be incident on a liquid hydrogen target of length 10 cm. The π+ particles will
be detected in the SKS spectrometer with an expected resolution of about 1
MeV. The cross section is estimated to be about 80 µb, which would provide
about 3500 counts in the Θ+ peak. If the cross section is up to four times lower
than expected, the Θ+ should still be visible above background with about 6
σ statistical significance for a Θ+ intrinsic width of 2 MeV or less. This direct
measurement avoids the difficulty of Fermi momentum and final state interac-
tions that are always present for a deuterium target. If a clear peak is seen, this
experiment will determine precise values for the Θ+ mass and width.

4 How can the parity be measured?

The parity of the Θ+ is closely related to questions of the Θ+ structure. If the
Θ+ exists with a narrow width, then it likely has angular momentum L > 0
otherwise it will just fall apart into a kaon and a nucleon. Also, it is known
that the L = 0 partial waves of the KN system are repulsive[38] and hence do
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not show resonance structure. The same is true for the L = 1 isovector partial
wave, P13, whereas the isoscalar P11 is attractive. From this heuristic reasoning,

the most likely parity assignment for the Θ+ is positive parity with Jπ = 1

2

+
.

(Recall that the intrinsic parity of the s̄ quark is negative.)
On the other hand, lattice gauge calculations suggest that the lowest mass

eigenstate of the ududs̄ system is just above the KN threshold with negative
parity[39, 40] and the next mass eigenstate (with positive parity) is several
hundred MeV higher. However, these calculations are done in the quenched
approximation with heavy quark masses, and further research is necessary to
determine if chiral symmetry effects are significant when realistic quark masses
are used[41]. In fact, not all lattice calculations agree, as one that uses optimal
domain-wall fermions[42] gives positive parity for the lowest mass eigenvalue.
Another lattice calculations uses several different interpolating operators[43],
some of which may have a larger overlap with the Θ+ wave function than others,
and the results are mixed: for some operators a state with negative parity is
found but not for other interpolating fields. Although lattice calculations have
made significant progress in past years[44] it is still too soon to get a conclusive
prediction of the Θ+ existence or parity from the lattice.

There are other indirect indications of the parity of the Θ+ based on exper-
iments. The cross sections that have been reported for photoproduction exper-
iments are on the order of 50-100 nb. Calculations based on Regge theory[45,
46, 47] give cross sections in this range for positive parity, but are a factor of 10
or more lower for negative parity. In other words, if the Θ+ is produced by a
t-channel process, photoproduction experiments would not have the sensitivity
to see a peak unless the parity is positive. Of course, it is possible that the Θ+

is produced by decay of an intermediate N∗ resonance in a s-channel process,
which is not included in these calculations (because of the unknownN∗ coupling
constant). If more experimental information on, say, the angular distribution of
Θ+ production can be measured, the assumptions in these Regge model calcu-
lations can be tested. Similarly, the COSY-TOF result gives a cross section of
about 0.4 µb which is comparable with calculations for positive parity[48] but
is more than a factor of ten too large if the Θ+ has negative parity.

4.1 Experimental Outlook

Clearly, a direct measurement of the Θ+ parity is desired. For photoproduc-
tion experiments, the beam and target can be polarized, but even if the Θ+ is
produced in a state with known polarization, the parity of the Θ+ can only be
found with a measurement of the recoil polarization of its decay nucleon[49],
which requires thousands of Θ+ events and specialized detectors. However, the
situation is much more favorable for hadronic beams, where the Pauli exclusion
principle restricts the symmetry of the wave function. Near threshold, where
only one or two partial waves are important, experiments with polarized beam
and polarized target can be used to determine the Θ+ parity. The idea is quite
simple [49, 50]. For the reaction pp → Σ+Θ+ when the beam and target spins
are parallel, both isospin and spin components of the wave function are symmet-
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ric, allowing only odd angular momentum (negative parity) states. Similarly,
antiparallel spins gives only positive parity states. Experimentally, the cross
section for Θ+ production near threshold (where the Σ+ and Θ+ are in a rel-
ative s-wave or p-wave) is much bigger in one spin allignment than the other.
Such measurements are planned after 2007 at COSY.

5 Summary and Conclusions

With both positive and null evidence for the Θ+ from a variety of experiments,
it is difficult to conclude whether the Θ+ exists or not. Furthermore, the theo-
retical difficulties to explain a possible narrow width, perhaps as small as 1 MeV,
suggest that if the Θ+ exists, it is very unusual indeed. Nor is guidance from
lattice gauge theory helpful, as some calculations show evidence for a negative
parity resonance, one gets positive parity, and others do not see a resonance in
either parity. So the job of proving or disproving the Θ+ existence is currently
an experimental task.

The question of existence of the Θ+ will not be solved by a “scorecard”
approach. With ten experiments with statistically-limited positive evidence and
almost as many experiments with null evidence (with higher statistics but also
uncertain backgrounds) the question is how to do better experiments. Several
new experiments are on the horizon, and so the existence question should be
answered within a year or so. The high-statistics experiments on hydrogen
and deuterium using the CLAS detector have just finished, and the analysis
of these data are proceeding rapidly. A new experiment with a K+ beam on a
hydrogen target has been scheduled for 2005, and calculations predict a Θ+ peak
with hundreds of counts and few-MeV resolution. The COSY facility has also
scheduled another run for the TOF detector, which could more than double their
statistics. These are just a few examples of the world-wide efforts to determine
if the Θ+ exists.
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